풀이 설명은 https://paido.tistory.com/21을 참고해 주세요.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 | #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #include <algorithm> #include <vector> #include <set> #include <map> #include <stack> #include <functional> #include <queue> #include <math.h> #include <memory.h> int readInt(); long long readLong(); int N, K, M; char S[50002]; void GatherInput() { N = readInt(); K = readInt(); M = readInt(); scanf("%s", S + 1); for (int i = 1; i <= N; i++) S[i] -= '0'; } struct SegTree { int Count; int Tree[1048577], Lazy[1048577]; void Init(int Count) { this->Count = Count; memset(Tree, 0, sizeof(Tree)); memset(Lazy, 0, sizeof(Lazy)); } void Update(int Start, int End, int Delta) { UpdateInternal(Start, End, 1, 1, Count, Delta); } int Query() { return QueryInternal(1, Count, 1, 1, Count); } private: void UpdateInternal(int Start, int End, int TPos, int TL, int TR, int Delta) { if (End < TL || TR < Start) return; if (Start <= TL && TR <= End) { /* Lazy update */ Lazy[TPos] += Delta; } else { /* Propagate down the Lazy if it exists */ Lazy[2 * TPos] += Lazy[TPos]; Lazy[2 * TPos + 1] += Lazy[TPos]; Lazy[TPos] = 0; /* Propagate */ int TMid = (TL + TR) / 2; UpdateInternal(Start, End, 2 * TPos, TL, TMid, Delta); UpdateInternal(Start, End, 2 * TPos + 1, TMid + 1, TR, Delta); /* Update */ Tree[TPos] = std::max(Tree[2 * TPos] + Lazy[2 * TPos], Tree[2 * TPos + 1] + Lazy[2 * TPos + 1]); } } int QueryInternal(int Start, int End, int TPos, int TL, int TR) { /* these two checks will automatically trap if TL == TR */ if (End < TL || TR < Start) return std::numeric_limits<int>::min(); if (Start <= TL && TR <= End) return Tree[TPos] + Lazy[TPos]; /* Propagate down the Lazy if it exists */ Lazy[2 * TPos] += Lazy[TPos]; Lazy[2 * TPos + 1] += Lazy[TPos]; Tree[TPos] += Lazy[TPos]; Lazy[TPos] = 0; int TMid = (TL + TR) / 2; return std::max(QueryInternal(Start, End, TPos * 2, TL, TMid), QueryInternal(Start, End, TPos * 2 + 1, TMid + 1, TR)); } } ST; int ToNum(char* F) { int num = 0; for (int i = 1; i <= K; i++) { num *= 10; num += F[i]; } return num; } int P; int A[500001], ACnt[500001]; int B[500001]; void Solve() { char c = 1; /* step 1 */ std::vector<int> Nums, NumsAll; auto try_push = [&](char* F, std::vector<int>& Target) { int num = ToNum(F); Target.push_back(num); }; for (int i = 1; i + K - 1 <= N; i++) { char* F = S + i - 1; // still 1-based /* normal case */ try_push(F, Nums); try_push(F, NumsAll); /* changing to 1 case */ for (int j = 1; j <= K; j++) { std::swap(c, F[j]); try_push(F, NumsAll); std::swap(c, F[j]); } } std::sort(NumsAll.begin(), NumsAll.end()); int prev = A[0] = -1; // to mark nonexistence and make A[0] < A[1] for binary search P = 0; for (auto x : NumsAll) { if (x > prev) { P++; A[P] = x; ACnt[P] = 0; prev = x; } } std::sort(Nums.begin(), Nums.end()); int q = 0; for (auto x : Nums) { while (A[q] != x) q++; ACnt[q]++; } /* step 2,3 */ int left = 1; for (int i = 1; i <= P; i++) { while (left < i && (A[i] - A[left] > M)) left++; B[i] = left; } /* step 4,5 */ ST.Init(P); for (int i = 1; i <= P; i++) { ST.Update(B[i], i, +ACnt[i]); } /* step 6 */ int opt = ST.Query(); /* step 7 */ auto Num2Idx = [](int num) -> int { auto p = std::lower_bound(A, A + P, num); return (p - A); }; std::vector<std::pair<int, int>> DeltaList; for (int i = 1; i <= N; i++) { for (int j = i - K + 1; j <= i; j++) { if (j >= 1 && j + K - 1 <= N) { char* F = S + j - 1; int num = ToNum(F); DeltaList.push_back(std::make_pair(Num2Idx(num), -1)); } } std::swap(c, S[i]); for (int j = i - K + 1; j <= i; j++) { if (j >= 1 && j + K - 1 <= N) { char* F = S + j - 1; int num = ToNum(F); DeltaList.push_back(std::make_pair(Num2Idx(num), +1)); } } std::swap(c, S[i]); /* apply */ for (auto p : DeltaList) ST.Update(B[p.first], p.first, +p.second); /* query */ opt = std::max(opt, ST.Query()); /* undo */ for (auto p : DeltaList) ST.Update(B[p.first], p.first, -p.second); /* clear */ DeltaList.clear(); } /* step 8 */ printf("%d\n", opt); } int main() { #ifdef BOJ int T = readInt(); #else int T = readInt(); setbuf(stdout, NULL); #endif for (int test_case = 1; test_case <= T; test_case++) { GatherInput(); #ifndef BOJ printf("Case #%d\n", test_case); #endif Solve(); } return 0; } int readInt() { int p; scanf("%d", &p); return p; } long long readLong() { long long p; scanf("%lld", &p); return p; } | cs |
'알고리즘 문제풀이' 카테고리의 다른 글
SCPC 2017 2차예선 5번 풀이. 자석 (0) | 2020.08.23 |
---|---|
SCPC 2020 1차예선 5번 구현 소스 코드 (0) | 2020.08.22 |
SCPC 2020 1차예선 풀이, 후기 (11) | 2020.08.22 |
SCPC 2019 본선 5번 풀이. 정육면체 재구성 (0) | 2020.02.20 |
SCPC 2019 본선 후기 (0) | 2019.07.30 |